The checkpoint ordering problem
نویسنده
چکیده
We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to some well-studied combinatorial optimization problems, namely the Single-Row Facility Layout Problem, the Linear Ordering Problem and a variant of parallel machine scheduling. In this paper we study the complexity of the (COP) and its special cases. The general version of the (COP) with an arbitrary but fixed number of checkpoints is NP-hard in the weak sense. We propose both a dynamic programming algorithm and an integer linear programming approach for the (COP) . Our computational experiments indicate that the (COP) is hard to solve in practice. While the run time of the dynamic programming algorithm strongly depends on the length of the departments, the integer linear programming approach is able to solve instances with up to 25 departments to optimality.
منابع مشابه
Resource Constrained Project Scheduling with Material Ordering: Two Hybridized Meta-Heuristic Approaches (TECHNICAL NOTE)
Resource constrained project scheduling problem (RCPSP) is mainly investigated with the objective of either minimizing project makespan or maximizing project net present value. However, when material planning plays a key role in a project, the existing models cannot help determining material ordering plans to minimize material costs. In this paper, the RCPSP incorporated with the material order...
متن کاملA Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملAn Integrated Model of Project Scheduling and Material Ordering: A Hybrid Simulated Annealing and Genetic Algorithm
This study aims to deal with a more realistic combined problem of project scheduling and material ordering. The goal is to minimize the total material holding and ordering costs by determining the starting time of activities along with material ordering schedules subject to some constraints. The problem is first mathematically modelled. Then a hybrid simulated annealing and genetic algorithm is...
متن کاملTwo Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering Problem (PROP)
Proper arrangement of facility layout is a key issue in management that influences efficiency and the profitability of the manufacturing systems. Parallel Row Ordering Problem (PROP) is a special case of facility layout problem and consists of looking for the best location of n facilities while similar facilities (facilities which has some characteristics in common) should be arranged in a row ...
متن کاملA revisit of a mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers
In this paper fully fuzzy linear programming (FFLP) problem with both equality and inequality constraints is considered where all the parameters and decision variables are represented by non-negative trapezoidal fuzzy numbers. According to the current approach, the FFLP problem with equality constraints first is converted into a multi–objective linear programming (MOLP) problem with crisp const...
متن کامل